회귀, 분류 모델링 심화 선형회귀와 로지스틱 회귀 외에 자주 쓰는 알고리즘을 알아봅시다.1. 의사결정나무와 랜덤 포레스트 (1) 의사결정나무 : 의사결정규칙을 나무 구조로 나타내어 전체 자료를 몇 개의 소집단으로 분류하거나 예측을 수행하는 분석 방법명칭루트 노드(Root Node): 의사결정나무의 시작점. 최초의 분할조건리프 노드(Leaf Node): 루트 노드로부터 파생된 중간 혹은 최종 노드분류기준(criteria): sex는 여성인 경우 0, 남성인 경우 1로 인코딩. 여성인 경우 좌측 노드로, 남성인 경우 우측 노드로 분류불순도(impurity)불순도 측정 방법 중 하나 인 지니 계수는 0과 1사이 값으로 0이 완벽한 순도(모든 샘플이 하나의 클래스), 1은 완전한 불순도(노드의 샘플의 균등하게..